ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи 55 боксёров участвовали в турнире по системе "проигравший выбывает". Бои шли последовательно. Известно, что у участников каждого боя число предыдущих побед отличалось не более чем на 1. Какое наибольшее число боёв мог провести победитель турнира? Решение |
Страница: 1 [Всего задач: 5]
Банкомат обменивает монеты: дублоны на пистоли и наоборот. Пистоль стоит s дублонов, а дублон – 1/s пистолей, где s не обязательно целое. В банкомат можно вбросить любое число монет одного вида, после чего он выдаст в обмен монеты другого вида, округляя результат до ближайшего целого числа (если ближайших чисел два, выбирается большее). а) Может ли так быть, что обменяв сколько-то дублонов на пистоли, а затем обменяв полученные пистоли на дублоны, мы получим больше дублонов, чем было вначале? б) Если да, то может ли случиться, что полученное число дублонов ещё увеличится, если проделать с ними такую же операцию?
Диагонали выпуклого четырёхугольника ABCD перпендикулярны и
пересекаются в точке O. Известно, что сумма радиусов окружностей, вписанных в треугольники AOB и COD, равна сумме радиусов окружностей, вписанных в треугольники BOC и DOA. Докажите, что
Полицейский участок расположен на прямой дороге, бесконечной в обе стороны. Некто угнал старую полицейскую машину, максимальная скорость которой составляет 90% от максимальной скорости новой машины. В некоторый момент в участке спохватились и послали вдогонку полицейского на новой полицейской машине. Однако вот беда: полицейский не знал, ни когда машина была угнана, ни в каком направлении вдоль дороги уехал угонщик. Сможет ли полицейский поймать угонщика?
Квадратная доска разделена на n² прямоугольных клеток n – 1 горизонтальными и n – 1 вертикальными прямыми. Клетки раскрашены в шахматном порядке. Известно, что на одной диагонали все n клеток чёрные и квадратные. Докажите, что общая площадь всех чёрных клеток доски не меньше общей площади белых.
55 боксёров участвовали в турнире по системе "проигравший выбывает". Бои шли последовательно. Известно, что у участников каждого боя число предыдущих побед отличалось не более чем на 1. Какое наибольшее число боёв мог провести победитель турнира?
Страница: 1 [Всего задач: 5] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|