ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Даны треугольник ABC и произвольная точка P, A1, B1 и C1 – вторые точки пересечения прямых AP, BP и CP с описанной окружностью треугольника ABC, A2, B2 и C2 – точки, симметричные A1, B1 и C1 относительно прямых BC, CA и AB соответственно. Докажите, что треугольники A1B1C1 и A2B2C2 подобны. Решение |
Страница: << 1 2 [Всего задач: 6]
Даны треугольник ABC и произвольная точка P, A1, B1 и C1 – вторые точки пересечения прямых AP, BP и CP с описанной окружностью треугольника ABC, A2, B2 и C2 – точки, симметричные A1, B1 и C1 относительно прямых BC, CA и AB соответственно. Докажите, что треугольники A1B1C1 и A2B2C2 подобны.
Страница: << 1 2 [Всего задач: 6] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|