Страница:
<< 61 62 63 64
65 66 67 >> [Всего задач: 810]
Клетки доски 7×7 окрашены в шахматном порядке так, что углы окрашены в чёрный цвет. Разрешается перекрашивать в противоположный цвет любые две соседние клетки. Можно ли с помощью таких операций перекрасить всю доску в белый цвет?
|
|
Сложность: 3 Классы: 8,9,10
|
На плоскости нарисовано несколько прямых (не меньше двух),
никакие две из которых не параллельны и никакие три не проходят
через одну точку.
Докажите, что среди частей, на которые эти прямые делят плоскость,
найдется хотя бы один угол.
На столе стоят семь стаканов – все вверх дном. За один ход можно перевернуть любые четыре стакана.
Можно ли за несколько ходов добиться того, чтобы все стаканы стояли правильно?
|
|
Сложность: 3 Классы: 6,7,8,9
|
Студенты кафедры высшей геометрии и топологии, находясь летом на отдыхе,
разрезали арбуз на 4 части и съели. Могло ли получиться 5 корок?
Можно ли осветить круглую арену 100 прожекторами
так, чтобы каждый из них освещал выпуклую фигуру,
никакой из них не освещал всю арену, но
любые два из них вместе уже освещали всю арену?
Страница:
<< 61 62 63 64
65 66 67 >> [Всего задач: 810]