ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что в любом треугольнике сумма медиан больше 3/4 периметра, но меньше периметра.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 57304

Тема:   [ Неравенства с медианами ]
Сложность: 2
Классы: 8

Докажите, что  (a + b - c)/2 < mc < (a + b)/2, где a, b и c - длины сторон произвольного треугольника, mc - медиана к стороне c.
Прислать комментарий     Решение


Задача 57305

Тема:   [ Неравенства с медианами ]
Сложность: 3
Классы: 8

Докажите, что в любом треугольнике сумма медиан больше 3/4 периметра, но меньше периметра.
Прислать комментарий     Решение


Задача 57306

Тема:   [ Неравенства с медианами ]
Сложность: 3
Классы: 8

Даны n точек  A1,..., An и окружность радиуса 1. Докажите, что на окружности можно выбрать точку M так, что  MA1 + ... + MAn $ \geq$ n.
Прислать комментарий     Решение


Задача 57307

Тема:   [ Неравенства с медианами ]
Сложность: 4
Классы: 8

Точки  A1,..., An не лежат на одной прямой. Пусть две разные точки P и Q обладают тем свойством, что  A1P + ... + AnP = A1Q + ... + AnQ = s. Докажите, что тогда  A1K + ... + AnK < s для некоторой точки K.
Прислать комментарий     Решение


Задача 57308

Тема:   [ Неравенства с медианами ]
Сложность: 5
Классы: 8

На столе лежит 50 правильно идущих часов. Докажите, что в некоторый момент сумма расстояний от центра стола до концов минутных стрелок окажется больше суммы расстояний от центра стола до центров часов.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .