ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В квадрате со стороной 1 расположена ломаная длиной L. Известно, что каждая точка квадрата удалена от некоторой точки этой ломаной меньше чем на  $ \varepsilon$. Докажите, что тогда  L $ \geq$ $ {\frac{1}{2\varepsilon }}$ - $ {\frac{\pi\varepsilon }{2}}$.

   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 57364

Тема:   [ Ломаные внутри квадрата ]
Сложность: 4+
Классы: 8,9

Внутри квадрата со стороной 1 расположена несамопересекающаяся ломаная длины 1000. Докажите, что найдется прямая, параллельная одной из сторон квадрата, пересекающая эту ломаную по крайней мере в 500 точках.
Прислать комментарий     Решение


Задача 57365

Тема:   [ Ломаные внутри квадрата ]
Сложность: 5
Классы: 8,9

В квадрате со стороной 1 расположена ломаная длиной L. Известно, что каждая точка квадрата удалена от некоторой точки этой ломаной меньше чем на  $ \varepsilon$. Докажите, что тогда  L $ \geq$ $ {\frac{1}{2\varepsilon }}$ - $ {\frac{\pi\varepsilon }{2}}$.
Прислать комментарий     Решение


Задача 57366

Тема:   [ Ломаные внутри квадрата ]
Сложность: 5
Классы: 8,9

Внутри квадрата со стороной 1 расположено n2 точек. Докажите, что существует ломаная, содержащая все эти точки, длина которой не превосходит 2n.
Прислать комментарий     Решение


Задача 57367

Тема:   [ Ломаные внутри квадрата ]
Сложность: 5+
Классы: 8,9

Внутри квадрата со стороной 100 расположена ломаная L, обладающая тем свойством, что любая точка квадрата удалена от L не больше чем на 0, 5. Докажите, что на L есть две точки, расстояние между которыми не больше 1, а расстояние по L между ними не меньше 198.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .