ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Два квадрата BCDA и BKMN имеют общую вершину B. Докажите, что медиана BE треугольника ABK и высота BF треугольника CBN лежат на одной прямой. (Вершины обоих квадратов перечислены по часовой стрелке.)

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53]      



Задача 57919  (#18.001)

Темы:   [ Поворот на $90^\circ$ ]
[ Поворот помогает решить задачу ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

На сторонах BC и CD квадрата ABCD взяты точки M и K соответственно, причем $ \angle$BAM = $ \angle$MAK. Докажите, что BM + KD = AK.
Прислать комментарий     Решение


Задача 57920  (#18.002)

Темы:   [ Поворот на $90^\circ$ ]
[ Поворот помогает решить задачу ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC проведены медиана CM и высота CH. Прямые, проведенные через произвольную точку P плоскости перпендикулярно CA, CM и CB, пересекают прямую CH в точках A1, M1 и B1. Докажите, что A1M1 = B1M1.
Прислать комментарий     Решение


Задача 57921  (#18.003)

Темы:   [ Поворот на $90^\circ$ ]
[ Поворот помогает решить задачу ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

Два квадрата BCDA и BKMN имеют общую вершину B. Докажите, что медиана BE треугольника ABK и высота BF треугольника CBN лежат на одной прямой. (Вершины обоих квадратов перечислены по часовой стрелке.)
Прислать комментарий     Решение


Задача 55723  (#18.004)

Темы:   [ Поворот помогает решить задачу ]
[ Поворот на $90^\circ$ ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4+
Классы: 8,9,10

Внутри квадрата A1A2A3A4 взята точка P. Из вершины A1 опущен перпендикуляр на A2P, из A2 — перпендикуляр на A3P, из A3 — на A4P, из A4 — на A1P. Докажите, что все четыре перпендикуляра (или их продолжения) пересекается в одной точке.

Прислать комментарий     Решение


Задача 57923  (#18.005)

Темы:   [ Поворот на $90^\circ$ ]
[ Поворот помогает решить задачу ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
Сложность: 3+
Классы: 8,9

На сторонах CB и CD квадрата ABCD взяты точки M и K так, что периметр треугольника CMK равен удвоенной стороне квадрата.
Найдите величину угла MAK.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .