ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сколько последовательностей  {a1, a2, ..., a2n},  состоящих из единиц и минус единиц, обладают тем свойством, что  a1 + a2 + ... + a2n = 0,  а все частичные суммы  a1,  a1 + a2,  ...,  a1 + a2 + ... + a2n  неотрицательны?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 60447  (#02.113)

Темы:   [ Числа Каталана ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 4
Классы: 8,9,10,11

Сколько последовательностей  {a1, a2, ..., a2n},  состоящих из единиц и минус единиц, обладают тем свойством, что  a1 + a2 + ... + a2n = 0,  а все частичные суммы  a1,  a1 + a2,  ...,  a1 + a2 + ... + a2n  неотрицательны?

Прислать комментарий     Решение

Задача 60448  (#02.114)

Темы:   [ Числа Каталана ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 4
Классы: 8,9,10,11

Сколько существует способов разрезать выпуклый (n+2)-угольник диагоналями на треугольники?

Прислать комментарий     Решение

Задача 60449  (#02.115)

 [Маршруты ладьи]
Темы:   [ Числа Каталана ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 3+
Классы: 8,9,10,11

Рассмотрим шахматную доску n×n. Требуется провести ладью из левого нижнего угла в правый верхний. Двигаться можно только вверх и вправо, не заходя при этом на клетки главной диагонали и ниже нее. (Ладья оказывается на главной диагонали только в начальный и в конечный моменты времени.) Сколько у ладьи существует таких маршрутов?

Прислать комментарий     Решение

Задача 60450  (#02.116)

 [Очередь в кассу]
Темы:   [ Числа Каталана ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 3+
Классы: 8,9,10,11

Билеты стоят 50 центов, и 2n покупателей стоят в очереди в кассу. Половина из них имеет по одному доллару, остальные – по 50 центов. Кассир начинает продажу билетов, не имея денег. Сколько существует различных порядков в очереди, таких, что кассир всегда может дать сдачу?

Прислать комментарий     Решение

Задача 60451  (#02.117)

 [Формула для чисел Каталана]
Темы:   [ Числа Каталана ]
[ Принцип крайнего (прочее) ]
[ Комбинаторика орбит ]
Сложность: 4+
Классы: 8,9,10,11

  а) Пусть  {a1, a2,..., an}  – последовательность целых чисел, сумма которых равна 1. Докажите, что ровно у одного из ее циклических сдвигов
{a1, a2, ..., an},  {a2, ..., an, a1},  ...,  {an, a1, ..., an–1}  все частичные суммы (от начала до произвольного элемента) положительны.

  б) Выведите отсюда равенства:      где  (4n – 2)!!!! = 2·6·10·...(4n – 2)  – произведение, в котором участвует каждое четвёртое число.
  Определение чисел Каталана Cn смотри в справочнике.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .