ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Натуральные числа m1, ..., mn попарно взаимно просты. Докажите, что сравнение  ab (mod m1m2...mn)  равносильно системе
    a ≡ b (mod m1),
    a ≡ b (mod m2),
        ...
    a ≡ b (mod mn).

   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 19]      



Задача 60820  (#04.194)

Темы:   [ Китайская теорема об остатках ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 9,10,11

При каких целых n число  n² + 3n + 1  делится на 55?

Прислать комментарий     Решение

Задача 60821  (#04.195)

Темы:   [ Китайская теорема об остатках ]
[ Малая теорема Ферма ]
[ Теорема Эйлера ]
Сложность: 4-
Классы: 9,10,11

Найдите остатки от деления:  а) 1910 на 6;   б) 1914 на 70;   в) 179 на 48;   г) 141414 на 100.

Прислать комментарий     Решение

Задача 60822  (#04.196)

Темы:   [ Китайская теорема об остатках ]
[ Неопределено ]
Сложность: 3+
Классы: 9,10,11

Натуральные числа m1, ..., mn попарно взаимно просты. Докажите, что сравнение  ab (mod m1m2...mn)  равносильно системе
    a ≡ b (mod m1),
    a ≡ b (mod m2),
        ...
    a ≡ b (mod mn).

Прислать комментарий     Решение

Задача 60823  (#04.197)

Темы:   [ Теорема Эйлера ]
[ Китайская теорема об остатках ]
Сложность: 3+
Классы: 9,10,11

Натуральные числа m1, ..., mn попарно взаимно просты. Докажите, что число  x = (m2...mn)φ(m1)  является решением системы
    x ≡ 1 (mod m1),
    x ≡ 0 (mod m2),
        ...
    x ≡ 0 (mod mn).

Прислать комментарий     Решение

Задача 60824  (#04.198)

Темы:   [ Китайская теорема об остатках ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 9,10,11

Пользуясь результатом задачи 60823, укажите в явном виде число x, которое удовлетворяет системе из задачи 60825.

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .