ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Исследуйте системы уравнений:

а)

б)

в)

г)

д)

е)

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 [Всего задач: 100]      



Задача 78130  (#09.097)

Темы:   [ Симметричная стратегия ]
[ Системы линейных уравнений ]
Сложность: 3+
Классы: 8,9

Имеется система уравнений

    *x + *y + *z = 0,
    *x + *y + *z = 0,
    *x + *y + *z = 0.

Два человека поочерёдно вписывают вместо звёздочек числа.
Доказать, что начинающий всегда может добиться того, чтобы система имела ненулевое решение.

Прислать комментарий     Решение

Задача 61348  (#09.098)

Темы:   [ Системы линейных уравнений ]
[ Методы решения задач с параметром ]
[ Теорема Безу. Разложение на множители ]
[ Геометрические интерпретации в алгебре ]
Сложность: 4
Классы: 9,10,11

Исследуйте системы уравнений:

а)

б)

в)

г)

д)

е)

Прислать комментарий     Решение

Задача 61349  (#09.099)

Тема:   [ Системы линейных уравнений ]
Сложность: 4-
Классы: 8,9,10,11

Решите системы уравнений:

а)   x1 + x2 + x3 = 0,
      x2 + x3 + x4 = 0,
      ...
      x99 + x100 + x1 = 0,
      x100 + x1 + x2 = 0;

б)   x + y + z = a,
      y + z + t = b,
      y + z + t = c,
      t + x + y = d;

в)   x1 + x2 + x3 + x4 = 2a1,
      x1 + x2x3x4 = 2a2,
      x1x2 + x3x4 = 2a3,
      x1x2x3 + x4 = 2a4;

г)   x1 + 2x2 + 3x3 + ... + nxn = a1,
      nx1 + x2 + 2x3 + ... + (n – 1)nxn = a2,
      ...
      2x1 + 3x2 + 4x3 + ... + xn = an.

Прислать комментарий     Решение

Задача 61350  (#09.100)

Темы:   [ Взвешивания ]
[ Четность и нечетность ]
[ Принцип крайнего (прочее) ]
[ Системы линейных уравнений ]
Сложность: 5-
Классы: 9,10,11

Имеются 13 гирь. Известно, что любые 12 из них можно так разложить на две чашки весов, по шесть на каждую, что наступит равновесие.
Докажите, что все гири имеют одну и ту же массу, если известно, что:
  а) масса каждой гири равна целому числу граммов;
  б) масса каждой гири равна рациональному числу граммов;
  в) масса каждой гири может быть равна любому действительному (неотрицательному) числу.

Прислать комментарий     Решение

Задача 78009  (#09.101)

Темы:   [ Линейные неравенства и системы неравенств ]
[ Системы линейных уравнений ]
Сложность: 3+
Классы: 10,11

Дано 100 чисел a1, a2, a3, ..., a100, удовлетворяющих условиям:
  a1 – 4a2 + 3a3 ≥ 0,
  a2 – 4a3 + 3a4 ≥ 0,
  a3 – 4a4 + 3a5 ≥ 0,
    ...,
  a99 – 4a100 + 3a1 ≥ 0,
  a100 – 4a1 + 3a2 ≥ 0.
Известно, что  a1 = 1,  определить a2, a3, ..., a100.

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .