ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Предположим, что имеется набор функций  f1(x), ...,  fn(x), определённых на отрезке  [a, b].  Докажите неравенство:

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 76]      



Задача 61397  (#10.046)

Тема:   [ Показательные функции и логарифмы (прочее) ]
Сложность: 3+
Классы: 9,10,11

Как расставить скобки в выражении 22...2, чтобы оно было максимальным?

Прислать комментарий     Решение

Задача 61398  (#10.047)

Темы:   [ Произведения и факториалы ]
[ Алгебраические неравенства (прочее) ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 3+
Классы: 9,10,11

Докажите справедливость оценок:

  а)  

  б)  

  в)  

  г)  

Прислать комментарий     Решение

Задача 61399  (#10.048)

Темы:   [ Уравнения в целых числах ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 2
Классы: 8,9,10

Докажите, что уравнение   x/y + y/z + z/x = 1   неразрешимо в натуральных числах.

Прислать комментарий     Решение

Задача 61400  (#10.049)

 [Сумма минимумов и минимум суммы]
Тема:   [ Алгебраические неравенства (прочее) ]
Сложность: 2+
Классы: 8,9,10,11

Предположим, что имеется набор функций  f1(x), ...,  fn(x), определённых на отрезке  [a, b].  Докажите неравенство:

Прислать комментарий     Решение

Задача 61401  (#10.050)

Темы:   [ Классические неравенства (прочее) ]
[ Исследование квадратного трехчлена ]
Сложность: 4
Классы: 9,10,11

Докажите неравенство:   + ... + .
Значения переменных считаются положительными.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 76]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .