ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Bong-Gyun Koh

Петя увидел на доске несколько различных чисел и решил составить выражение, среди значений которого все эти числа есть, а других нет. Составляя выражение, Петя может использовать какие угодно числа, особый знак "±", а также обычные знаки "+", "–", "×" и скобки. Значения составленного выражения он вычисляет, выбирая для каждого знака "±" либо "+", либо "–" во всех возможных комбинациях. Например, если на доске были числа 4 и 6, подойдёт выражение  5 ± 1,  а если на доске были числа 1, 2 и 3, то подойдёт выражение  (2 ± 0,5) ± 0,5.  Возможно ли составить необходимое выражение, если на доске были написаны
  а) числа 1, 2, 4;
  б) любые 100 различных действительных чисел?

   Решение

Задачи

Страница: << 1 2 [Всего задач: 7]      



Задача 65466

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 8,9

Автор: Bong-Gyun Koh

Петя увидел на доске несколько различных чисел и решил составить выражение, среди значений которого все эти числа есть, а других нет. Составляя выражение, Петя может использовать какие угодно числа, особый знак "±", а также обычные знаки "+", "–", "×" и скобки. Значения составленного выражения он вычисляет, выбирая для каждого знака "±" либо "+", либо "–" во всех возможных комбинациях. Например, если на доске были числа 4 и 6, подойдёт выражение  5 ± 1,  а если на доске были числа 1, 2 и 3, то подойдёт выражение  (2 ± 0,5) ± 0,5.  Возможно ли составить необходимое выражение, если на доске были написаны
  а) числа 1, 2, 4;
  б) любые 100 различных действительных чисел?

Прислать комментарий     Решение

Задача 65467  (#7)

Темы:   [ Принцип крайнего (прочее) ]
[ Полуинварианты ]
Сложность: 4+
Классы: 8,9

У Деда Мороза было n сортов конфет, по k штук каждого сорта. Он распределил все конфеты как попало по k подаркам, в каждый – по n конфет, и раздал их k детям. Дети решили восстановить справедливость. Два ребёнка готовы передать друг другу по конфете, если каждый получает конфету сорта, которого у него нет. Всегда ли можно организовать серию обменов так, что у каждого окажутся конфеты всех сортов?

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .