ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дано натуральное число $n$. Для произвольного числа $x$ рассмотрим сумму $$ Q(x)=\lfloor x\rfloor+\left\lfloor\frac{x}{2}\right\rfloor+\left\lfloor\frac{x}{3}\right\rfloor+\left\lfloor\frac{x}{4}\right\rfloor+\cdots+\left\lfloor\frac{x}{10^{n}}\right\rfloor . $$ Найдите разность $Q\left(10^{n}\right)-Q\left(10^{n}-1\right)$. (Здесь $\lfloor x\rfloor$ обозначает целую часть числа $x$, то есть наибольшее целое число, не превосходящее $x$.) Решение |
Страница: 1 [Всего задач: 1]
Страница: 1 [Всего задач: 1] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|