ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Два отрезка натурального ряда из 1961 числа подписаны один под другим. Доказать, что каждый из них можно так переставить, что если сложить числа, стоящие одно под другим, получится снова отрезок натурального ряда.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78243  (#1)

Темы:   [ Псевдоскалярное произведение ]
[ Вычисление площадей ]
Сложность: 3+
Классы: 9,10

Дан треугольник ABC и точка O. M1, M2, M3 — центры тяжести треугольников OAB, OBC, OCA соответственно. Доказать, что площадь треугольника M1M2M3 равна 1/9 площади ABC.
Прислать комментарий     Решение


Задача 78244  (#2)

Темы:   [ Теория игр (прочее) ]
[ Целая и дробная части. Принцип Архимеда ]
[ Скалярное произведение. Соотношения ]
Сложность: 4+
Классы: 9,10,11

Играют двое; один из них загадывает набор из целых чисел ( x1, x2,..., xn) -- однозначных, как положительных, так и отрицательных. Второму разрешается спрашивать, чему равна сумма a1x1 + ... + anxn, где (a1...an) -- любой набор. Каково наименьшее число вопросов, за которое отгадывающий узнает задуманный набор?
Прислать комментарий     Решение


Задача 78245  (#3)

Тема:   [ Индукция в геометрии ]
Сложность: 3+
Классы: 9,10

См. задачу 3 для 7 класса.
Прислать комментарий     Решение


Задача 78246  (#4)

Темы:   [ Четность и нечетность ]
[ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
[ Обход графов ]
Сложность: 3+
Классы: 7,8,9

Дана ладья, которой разрешается делать ходы только длиной в одну клетку. Доказать, что она может обойти все клетки прямоугольной шахматной доски, побывав на каждой клетке ровно один раз, и вернуться в начальную клетку тогда и только тогда, когда число клеток на доске чётно.

Прислать комментарий     Решение

Задача 78247  (#5)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 9,10

Два отрезка натурального ряда из 1961 числа подписаны один под другим. Доказать, что каждый из них можно так переставить, что если сложить числа, стоящие одно под другим, получится снова отрезок натурального ряда.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .