ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сеть метро имеет на каждой линии не менее 4 станций, из них не более трёх пересадочных. Ни на какой пересадочной станции не скрещиваются более двух линий. Какое наибольшее число линий может иметь такая сеть, если с каждой станции на любую другую можно попасть, сделав не больше двух пересадок?

   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 78593  (#1)

Тема:   [ Элементарные (основные) построения циркулем и линейкой ]
Сложность: 3
Классы: 8,9

Разделить циркулем и линейкой отрезок на 6 равных частей, проведя не более 8 линий (прямых, окружностей).
Прислать комментарий     Решение


Задача 78594  (#2)

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Индукция (прочее) ]
[ Иррациональные неравенства ]
Сложность: 5-
Классы: 8,9,10

Дано: $$ a_1=1,a_k=\left[\sqrt{a_1+a_2+\dots +a_{k-1}}\right].$$

Найти $a_{1000}$.

Примечание. $\left[A\right]$ — целая часть $A$.
Прислать комментарий     Решение


Задача 78595  (#3)

Темы:   [ Взвешивания ]
[ Сочетания и размещения ]
[ Классическая комбинаторика (прочее) ]
[ Теория алгоритмов ]
Сложность: 5+
Классы: 8,9,10,11

а) Из 19 шаров 2 радиоактивны. Про любую кучку шаров за одну проверку можно узнать, имеется ли в ней хотя бы один радиоактивный шар (но нельзя узнать, сколько их). Доказать, что за 8 проверок всегда можно выделить оба радиоактивных шара.

б) Из 11 шаров два радиоактивны. Доказать, что менее чем за 7 проверок нельзя гарантировать нахождение обоих радиоактивных шаров,
а за 7 проверок их всегда можно обнаружить.

Прислать комментарий     Решение

Задача 78596  (#4)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Классическая комбинаторика (прочее) ]
[ Теория графов (прочее) ]
Сложность: 4
Классы: 8,9

Сеть метро имеет на каждой линии не менее 4 станций, из них не более трёх пересадочных. Ни на какой пересадочной станции не скрещиваются более двух линий. Какое наибольшее число линий может иметь такая сеть, если с каждой станции на любую другую можно попасть, сделав не больше двух пересадок?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .