ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сумма 100 натуральных чисел, каждое из которых не больше 100, равна 200.
Доказать, что из них можно выбрать несколько чисел, сумма которых равна 100.

   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 79285

Темы:   [ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 7,8,9

Сумма 100 натуральных чисел, каждое из которых не больше 100, равна 200.
Доказать, что из них можно выбрать несколько чисел, сумма которых равна 100.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .