ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи С выпуклым четырехугольником ABCD проделывают следующую операцию: одну из данных вершин меняют на точку, симметричную этой вершине относительно серединного перпендикуляра к диагонали (концом которой она не является), обозначив новую точку прежней буквой. Эту операцию последовательно применяют к вершинам A, B, C, D, A, B,... - всего n раз. Назовем четырехугольник допустимым, если его стороны попарно различны и после применения любого числа операций он остается выпуклым. Существует ли: а) допустимый четырехугольник, который после n<5 операций становится равным исходному; б) такое число n0, что любой допустимый четырехугольник после n=n0 операций становится равным исходному? Решение |
Страница: 1 [Всего задач: 1]
а) допустимый четырехугольник, который после n<5 операций становится равным исходному; б) такое число n0, что любой допустимый четырехугольник после n=n0 операций становится равным исходному?
Страница: 1 [Всего задач: 1] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|