ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На острове ⅔ всех мужчин женаты и ⅗ всех женщин замужем. Какая доля населения острова состоит в браке? ![]() ![]() Хорда AB разбивает окружность S на две дуги. Окружность S1 касается хорды AB в точке M и одной из дуг в точке N. Докажите, что: а) прямая MN проходит через середину P второй дуги; б) длина касательной PQ к окружности S1 равна PA. ![]() ![]() ![]() Дан параллелограмм ABCD. Вписанные окружности треугольников ABC и ADC касаются диагонали AC в точках X и Y. Вписанные окружности треугольников BCD и BAD касаются диагонали BD в точках Z и T. Докажите, что если все точки X, Y, Z, T различны, то они являются вершинами прямоугольника. ![]() ![]() ![]() В написанном выражении ((((1? 2) ? 3) ? 4) ? 5) ? 6 вместо каждого знака ? вставить знак одного из четырех арифметических действии: +, -, *, \ так, чтобы результат вычислении равнялся 35 (при делении дробная часть в частном отбрасывается). Достаточно найти одно решение. ![]() ![]() |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 56]
Предполагается, что такое множество заведомо существует.
А [k, m] = 0 , если клетка [k,m] "проходима''; А [k,m] = 1, если клетка [k,m] '' непроходима ''. Начальное положение путника задается в проходимой клетке [i, j]. Путник может перемещаться из одной проходимой клетки в другую, если они имеют общую сторону. Путник выходит из лабиринта , когда попадает в граничную клетку ( то есть клетку [k,m],где k или m равны 1 или 40 ).
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 56] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |