ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны цело численный массив А [1: n] и число М. Найти множество элементов А [i1], А [i2], ..., А [ik] (1< i1 < ... < ik < n), что А [i1] + А [i2] + ... А [ik] = М. Предполагается, что такое множество заведомо существует. РешениеМожет ли путник выйти из лабиринта? Если может, то напечатать путь от выхода до начального положения путника. Лабиринт задан массивом А размером 40*40, в котором: А [k, m] = 0 , если клетка [k,m] "проходима''; А [k,m] = 1, если клетка [k,m] '' непроходима ''. Начальное положение путника задается в проходимой клетке [i, j]. Путник может перемещаться из одной проходимой клетки в другую, если они имеют общую сторону. Путник выходит из лабиринта , когда попадает в граничную клетку ( то есть клетку [k,m],где k или m равны 1 или 40 ). Решение |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 44]
Предполагается, что такое множество заведомо существует.
А [k, m] = 0 , если клетка [k,m] "проходима''; А [k,m] = 1, если клетка [k,m] '' непроходима ''. Начальное положение путника задается в проходимой клетке [i, j]. Путник может перемещаться из одной проходимой клетки в другую, если они имеют общую сторону. Путник выходит из лабиринта , когда попадает в граничную клетку ( то есть клетку [k,m],где k или m равны 1 или 40 ).
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 44] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|