ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 6702]      



Задача 57838

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Удвоение медианы ]
[ Центральная симметрия помогает решить задачу ]
[ Ромбы. Признаки и свойства ]
Сложность: 2+
Классы: 7,8,9

Докажите, что если в треугольнике медиана и биссектриса совпадают, то треугольник равнобедренный.

Прислать комментарий     Решение

Задача 102499

Тема:   [ Отношение площадей подобных треугольников ]
Сложность: 2+
Классы: 8,9

Прямая, параллельная стороне AB треугольника ABC, пересекает сторону BC в точке M, а сторону AC – в точке N. Площадь треугольника MCN в два раза больше площади трапеции ABMN. Найдите  CM : MB.

Прислать комментарий     Решение

Задача 102500

Тема:   [ Отношение площадей подобных треугольников ]
Сложность: 2+
Классы: 8,9

Прямая, параллельная стороне LM треугольника KLM, пересекает сторону KL в точке A, а сторону KM – в точке B. Площадь трапеции ALMB в три раза меньше площади треугольника ABK. Найдите  MB : MK.

Прислать комментарий     Решение

Задача 102713

Тема:   [ Метод координат на плоскости ]
Сложность: 2+
Классы: 8,9

Даны точки A(0; - 2), B(- 2;1), C(0;0) и D(2; - 9). Укажите те из них, которые лежат на прямой 2x - 3y + 7 = 0.

Прислать комментарий     Решение


Задача 108469

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

Квадрат вписан в равнобедренный прямоугольный треугольник, причём одна вершина квадрата расположена на гипотенузе, противоположная ей вершина совпадает с вершиной прямого угла треугольника, а остальные лежат на катетах. Найдите сторону квадрата, если катет треугольника равен a.

Прислать комментарий     Решение

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .