Страница:
<< 1 2 [Всего задач: 6]
Задача
86123
(#6)
|
|
Сложность: 5+ Классы: 9,10,11
|
На прямоугольном листе бумаги нарисован круг, внутри которого Миша мысленно выбирает
n точек, а Коля пытается их разгадать. За одну попытку Коля указывает на листе (внутри или вне круга) одну точку, а Миша сообщает Коле расстояние от нее до ближайшей неразгаданной точки. Если оно оказывается нулевым, то после этого указанная точка считается разгаданной. Коля умеет отмечать на листе точки, откладывать расстояния и производить построения циркулем и линейкой. Может ли Коля наверняка разгадать все выбранные точки менее, чем за (
n+1)
2 попыток?
Страница:
<< 1 2 [Всего задач: 6]