Страница:
<< 1 2 [Всего задач: 7]
|
|
Сложность: 4 Классы: 10,11
|
Решите уравнение: (x³ – 2)(2sin x – 1) + (2x³ – 4) sin x = 0.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Даны таблица 100×100 клеток и N фишек. Рассматриваются все такие расстановки фишек в клетки таблицы, что никакие две фишки не стоят в соседних клетках. При каком наибольшем N в каждой из этих расстановок можно найти хотя бы одну фишку, от перемещения которой в соседнюю клетку заданное условие не нарушится? (Соседними считаются клетки, имеющие общую сторону.)
Страница:
<< 1 2 [Всего задач: 7]