ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 7]      



Задача 111641  (#6)

Темы:   [ Неравенства с площадями ]
[ Площадь четырехугольника ]
[ Площадь треугольника (через высоту и основание) ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9,10

Египтяне вычисляли площадь выпуклого четырёхугольника по формуле (a+c)(b+d)/4 , где a , b , c , d  — длины сторон в порядке обхода. Найдите все четырёхугольники, для которых эта формула верна.
Прислать комментарий     Решение


Задача 111642  (#7)

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Произвольные многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
[ Отношение площадей подобных треугольников ]
[ Площадь трапеции ]
Сложность: 5-
Классы: 8,9,10,11

Нарисуйте многоугольник и точку на его границе так, что любая прямая, проходящая через эту точку, делит площадь этого многоугольника пополам.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .