ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 6]      



Задача 64579  (#6)

Тема:   [ Симметричная стратегия ]
Сложность: 4-
Классы: 6,7,8

На доске записаны два числа: 2014 и 2015. Петя и Вася ходят по очереди, начинает Петя. За один ход можно
  - либо уменьшить одно из чисел на его ненулевую цифру или на ненулевую цифру другого числа;
  - либо разделить одно из чисел пополам, если оно чётное.
Выигрывает тот, кто первым напишет однозначное число. Кто из них может выиграть, как бы ни играл соперник?

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .