Страница:
<< 1 2 [Всего задач: 7]
Задача
64656
(#6)
|
|
Сложность: 4- Классы: 8,9
|
Из кубиков 1×1×1 склеен куб 3×3×3. Какое наибольшее количество кубиков можно из него выкинуть, чтобы осталась фигура с такими двумя свойствами:
- со стороны каждой грани исходного куба фигура выглядит как квадрат 3×3 (глядя перпендикулярно этой грани, мы не увидим просвета – видны 9 кубиков фигуры);
- переходя в фигуре от кубика к кубику через их общую грань, можно от каждого кубика добраться до любого другого?
Задача
64718
(#7)
|
|
Сложность: 4+ Классы: 9,10
|
На окружности отмечены 10 точек, занумерованные по часовой стрелке: A1, A2, ..., A10, причём их можно разбить на пары симметричных относительно центра окружности. Изначально в каждой отмеченной точке сидит по кузнечику. Каждую минуту один из кузнечиков прыгает вдоль окружности через своего соседа так, чтобы расстояние между ними не изменилось. При этом нельзя пролетать над другими кузнечиками и попадать в точку, где уже сидит кузнечик. Через некоторое время оказалось, что какие-то 9 кузнечиков сидят в точках A1, A2, ..., A9, а десятый сидит на дуге
A9A10A1. Можно ли утверждать, что он сидит именно в точке A10?
Страница:
<< 1 2 [Всего задач: 7]