Страница:
<< 1 2 3
4 >> [Всего задач: 19]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В классе меньше 30 человек. Вероятность того, что наугад выбранная девочка отличница, равна 3/13, а вероятность того, что наугад выбранный мальчик – отличник, равна 4/11. Сколько в классе отличников?
|
|
Сложность: 3+ Классы: 9,10,11
|
Игральную кость бросают раз за разом. Обозначим через Pn вероятность того, что в какой-то момент сумма очков, выпавших при всех
сделанных бросках, равна n. Докажите, что при n ≥ 7 верно равенство Pn = ⅙ (Pn–1 + Pn–2 + ... + Pn–6).
|
|
Сложность: 4- Классы: 9,10,11
|
Итоговый балл в фигурном катании выставляется следующим образом. Бригада судей состоит из десяти человек. Каждый из судей ставит спортсмену свою оценку за выступление. После этого из десяти полученных оценок случайным образом выбираются семь. Сумма этих семи оценок и есть итоговый балл. Места между спортсменами распределяются в соответствии с набранным итоговым баллом: чем выше балл, тем лучше результат. В чемпионате участвовало 6 спортсменов. Могло ли оказаться так, что:
а) спортсмен, у которого сумма всех 10 оценок максимальна, занял последнее место?
б) спортсмен, у которого сумма всех 10 оценок максимальна, занял последнее место, а спортсмен, у которого сумма всех 10 оценок минимальна, занял первое место?
|
|
Сложность: 4- Классы: 8,9,10,11
|
Можно ли:
а) нагрузить две монеты так, чтобы вероятности выпадения "орла" и "решки" были разные, а вероятности выпадения любой из комбинаций "решка, решка", "орел, решка", "орел, орел" были бы одинаковы?
б) нагрузить две кости так, чтобы вероятность выпадения любой суммы от 2 до 12 была одинаковой?
|
|
Сложность: 4- Классы: 9,10,11
|
На рулетке может выпасть любое число от 0 до 2007 с одинаковой вероятностью. Рулетку крутят раз за разом. Обозначим через Pk вероятность того, что в какой-то момент сумма чисел, выпавших при всех сделанных бросках, равна k. Какое число больше:
P2007 или P2008?
Страница:
<< 1 2 3
4 >> [Всего задач: 19]