Страница: 1
2 3 >> [Всего задач: 15]
|
|
Сложность: 3 Классы: 9,10,11
|
На координатной плоскости изобразите множество точек, удовлетворяющих неравенству x²y – y ≥ 0.
|
|
Сложность: 3 Классы: 8,9,10,11
|
При каком натуральном K величина достигает максимального значения?
|
|
Сложность: 3+ Классы: 10,11
|
По положительным числам х и у вычисляют а = 1/y и b = y + 1/x. После этого находят С – наименьшее число из трёх: x, a и b.
Какое наибольшее значение может принимать C?
|
|
Сложность: 3+ Классы: 9,10,11
|
Доказать, что если |ax² – bx + c| < 1 при любом x из отрезка [–1, 1], то и |(a + b)x² + c| < 1 на этом отрезке.
Имеется два набора чисел a1 > a2 > ... > an и b1 > b2 > ... > bn. Доказать, что a1b1 + a2b2 + ... + anbn > a1bn + a2bn–1 + ... + anb1.
Страница: 1
2 3 >> [Всего задач: 15]