ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 72 73 74 75 76 77 78 >> [Всего задач: 448]      



Задача 52961

Темы:   [ Против большей стороны лежит больший угол ]
[ Теорема Пифагора (прямая и обратная) ]
[ Теорема косинусов ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

Дан квадрат ABCD со стороной 4. Точка O выбрана в плоскости квадрата так, что  OB = 10,  OD = 6.  Найдите угол между вектором    и вектором, направленным из точки O в наиболее удалённую от неё вершину квадрата.

Прислать комментарий     Решение

Задача 52962

Темы:   [ Против большей стороны лежит больший угол ]
[ Теорема Пифагора (прямая и обратная) ]
[ Теорема косинусов ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

Площадь прямоугольника ABCD равна 48, а диагональ равна 10. В плоскости прямоугольника ABCD выбрана точка O так, что  OB = OD = .
Найдите расстояние от точки O до ближайшей к ней вершины прямоугольника.

Прислать комментарий     Решение

Задача 52963

Темы:   [ Против большей стороны лежит больший угол ]
[ Теорема Пифагора (прямая и обратная) ]
[ Теорема косинусов ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

Дан квадрат ABCD со стороной 8. Точка O выбрана в плоскости квадрата так, что  OB = 10OD = 6.  Найдите угол между вектором     и вектором, направленным из точки O в ближайшую к ней вершину квадрата.

Прислать комментарий     Решение

Задача 53615

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Величина угла между двумя хордами и двумя секущими ]
[ Теорема косинусов ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

В окружность вписан четырёхугольник ABCD, диагонали которого пересекаются в точке M. Известно, что  AB = a,  CD = b,  ∠AMB = α.
Найдите радиус окружности.

Прислать комментарий     Решение

Задача 53687

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вспомогательные подобные треугольники ]
[ Теорема косинусов ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

На одной из сторон угла, равного α  (α < 90°),  с вершиной в точке O взяты точки A и B, причём  OA = a,  OB = b.
Найдите радиус окружности, проходящей через точки A и B и касающейся другой стороны угла.

Прислать комментарий     Решение

Страница: << 72 73 74 75 76 77 78 >> [Всего задач: 448]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .