Страница:
<< 1 2 3 [Всего задач: 13]
|
|
Сложность: 3+ Классы: 9,10,11
|
Докажите равенство:
ctg 30o + ctg 75o = 2.
На сторонах треугольника ABC внешним образом построены квадраты с центрами A1, B1 и C1. Пусть a1, b1 и c1 – длины сторон треугольника A1B1C1, S и S1 – площади треугольников ABC и A1B1C1. Докажите, что:
а)
б) S1 – S = 1/8 (a² + b² + c²).
|
|
Сложность: 5- Классы: 9,10,11
|
Пусть a, b и c – длины сторон треугольника площади S; α1, β1 и γ1 – углы некоторого другого треугольника. Докажите, что
a² ctg α1 + b² ctg β1 + c² ctg γ1 ≥ 4S, причём равенство достигается, только когда рассматриваемые треугольники подобны.
Страница:
<< 1 2 3 [Всего задач: 13]