Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 77]
|
|
Сложность: 4- Классы: 9,10,11
|
Дан неравнобедренный остроугольный треугольник АВС. Вне его построены равнобедренные тупоугольные треугольники АВ1С и ВА1С с одинаковыми углами α при их основаниях АС и ВС. Перпендикуляр, проведённый из вершины С к отрезку А1В1 пересекает серединный перпендикуляр к стороне АВ в точке С1. Найдите угол АС1В.
Тысяча точек является вершинами выпуклого тысячеугольника, внутри которого
расположено ещё пятьсот точек так, что никакие три из пятисот не лежат на одной
прямой. Данный тысячеугольник разрезан на треугольники таким образом, что все
указанные 1500 точек являются вершинами треугольников и эти треугольники не
имеют никаких других вершин. Сколько получится треугольников при таком
разрезании?
Прямая отрезает от правильного n-угольника со стороной 1 треугольник APQ так, что AP + AQ = 1 (A – вершина n-угольника).
Найдите сумму углов, под которыми отрезок PQ виден из всех вершин n-угольника, кроме A.
|
|
Сложность: 4- Классы: 8,9,10
|
В выпуклом шестиугольнике AC1BA1CB1 AB1 = AC1, BC1 = BA1, CA1 = CB1 и ∠A + ∠B + ∠C = ∠A1 + ∠B1 + ∠C1.
Докажите, что площадь треугольника ABC равна половине площади шестиугольника.
Прямая отсекает от правильного 10-угольника ABCDEFGHIJ со стороной 1 треугольник PAQ, в котором PA + AQ = 1.
Найдите сумму углов, под которыми виден отрезок PQ из вершин B, C, D, E, F, G, H, I, J.
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 77]