ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 109333

Темы:   [ Правильная пирамида ]
[ Сфера, касающаяся ребер или сторон пирамиды ]
Сложность: 3
Классы: 10,11

Сторона основания правильной шестиугольной пирамиды равна a, боковое ребро равно b. Найдите радиус шара, касающегося сторон основания и продолжений боковых рёбер пирамиды.
Прислать комментарий     Решение


Задача 109334

Темы:   [ Правильная пирамида ]
[ Сфера, касающаяся ребер или сторон пирамиды ]
Сложность: 3
Классы: 10,11

Сторона основания правильной треугольной пирамиды равна a, боковое ребро равно b. Найдите радиус шара, касающегося плоскости основания и боковых рёбер пирамиды.
Прислать комментарий     Решение


Задача 109335

Темы:   [ Правильная пирамида ]
[ Сфера, касающаяся ребер или сторон пирамиды ]
Сложность: 3
Классы: 10,11

Сторона основания правильной четырёхугольной пирамиды равна a, боковое ребро равно b. Найдите радиус шара, касающегося плоскости основания и боковых рёбер пирамиды.
Прислать комментарий     Решение


Задача 109336

Темы:   [ Правильная пирамида ]
[ Сфера, касающаяся ребер или сторон пирамиды ]
Сложность: 3
Классы: 10,11

Сторона основания правильной шестиугольной пирамиды равна a, боковое ребро равно b. Найдите радиус шара, касающегося плоскости основания и боковых рёбер пирамиды.
Прислать комментарий     Решение


Задача 110298

Темы:   [ Правильная пирамида ]
[ Сфера, касающаяся ребер или сторон пирамиды ]
Сложность: 3
Классы: 10,11

Сторона основания правильной четырёхугольной пирамиды равна a , двугранный угол при основании равен 60o . Найдите радиус сферы, касающейся двух соседних боковых рёбер, противоположной боковой грани и основания.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .