ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 312]      



Задача 52732

Темы:   [ Две касательные, проведенные из одной точки ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Из точки A проведены две прямые, касающиеся окружности радиуса R в точках C и B, причём треугольник ABC — равносторонний. Найдите его площадь.

Прислать комментарий     Решение


Задача 53185

Темы:   [ Общая касательная к двум окружностям ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

На плоскости даны две окружности радиусов 4 и 3 с центрами в точках O1 и O2 , касающиеся некоторой прямой в точках M1 и M2 и лежащие по разные стороны от этой прямой. Отношение отрезка O1O2 к отрезку M1M2 равно . Найдите O1O2 .
Прислать комментарий     Решение


Задача 53262

Темы:   [ Вспомогательная окружность ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

В равнобедренном треугольнике ABC (AB = BC) проведена высота CD . Угол BAC равен α . Радиус окружности, проходящей через точки A , C и D , равен R . Найдите площадь треугольника ABC .
Прислать комментарий     Решение


Задача 53672

Темы:   [ Пересекающиеся окружности ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Окружности с центрами O1 и O2 пересекаются в точках A и B . Известно, что AO1B= 90o , AO2B = 60o , O1O2=a . Найдите радиусы окружностей.
Прислать комментарий     Решение


Задача 53800

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

В прямоугольной трапеции отношение диагоналей равно 2, а отношение оснований равно 4. Найдите углы трапеции.

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 312]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .