ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья Н. Виленкина "Комбинаторика" Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Квадратная таблица размером n×n заполнена неотрицательными числами так, что как сумма чисел каждой строки, так и сумма чисел каждого столбца равна 1. Докажите, что из таблицы можно выбрать n положительных чисел, никакие два из которых не стоят ни в одном столбце, ни в одной строке. ![]() ![]() Известно, что f(x), g(x) и h(x) – квадратные трёхчлены. Может ли уравнение f(g(h(x))) = 0 иметь корни 1, 2, 3, 4, 5, 6, 7 и 8? ![]() ![]() ![]() Из километров — в мили. В задаче 3.125 была введена фибоначчиева система счисления. Она оказывается удобной, когда нужно сделать перевод расстояния из километров в мили или наоборот. Предположим, что мы хотим узнать, сколько миль в 30 километрах. Для этого представляем число 30 в фибоначчиевой системе счисления:
30 = 21 + 8 + 1 = F8 + F6 + F2 = (1010001)F.
Теперь нужно
сдвинуть каждое число на одну позицию вправо, получая
F7 + F5 + F1 = 13 + 5 + 1 = 19 = (101001)F.
Поэтому предполагаемый
результат — 19 миль. (Правильный ответ — около 18.46
миль.) Аналогично делается перевод из миль в километры.
Объясните, почему работает такой алгоритм. Проверьте, что он дает округленное число миль в n километрах при всех n ![]() ![]() |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 502]
Монету бросают трижды. Сколько разных последовательностей орлов и решек можно при этом получить?
Каждую клетку квадратной таблицы 2×2 можно покрасить в чёрный или белый цвет. Сколько существует различных раскрасок этой таблицы?
Сколькими способами можно заполнить одну карточку в лотерее "Спортпрогноз"? (В этой лотерее нужно предсказать итог тринадцати спортивных матчей. Итог каждого матча – победа одной из команд либо ничья; счёт роли не играет).
В футбольной команде (11 человек) нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать?
На танцплощадке собрались N юношей и N девушек. Сколькими способами они могут разбиться на пары для участия в очередном танце?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 502] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |