Страница:
<< 19 20 21 22
23 24 25 >> [Всего задач: 367]
|
|
Сложность: 4- Классы: 8,9,10
|
В банде 50 бандитов. Все вместе они ни в одной разборке ни
разу не участвовали, а каждые двое встречались на разборках
ровно по разу. Докажите, что один из бандитов был
не менее, чем на восьми разборках.
|
|
Сложность: 4- Классы: 7,8,9
|
Первоклассник Петя знает только цифру 1. Докажите, что он может записать число, которое делится на 2001.
|
|
Сложность: 4- Классы: 8,9,10
|
Имеется 2k + 1 карточек, занумерованных числами от 1 до 2k + 1. Какое наибольшее число карточек можно выбрать так, чтобы ни один из извлечённых номеров не был равен сумме двух других извлечённых номеров?
|
|
Сложность: 4- Классы: 8,9,10
|
Даны 1002 различных числа, не превосходящих
2000. Докажите, что из них можно выбрать три таких числа, что
сумма двух из них равна третьему. Останется ли это утверждение
справедливым, если число 1002 заменить на 1001?
Докажите, что из 11 различных бесконечных десятичных дробей можно выбрать две такие, которые совпадают в бесконечном числе разрядов.
Страница:
<< 19 20 21 22
23 24 25 >> [Всего задач: 367]