Страница:
<< 44 45 46 47
48 49 50 >> [Всего задач: 330]
|
|
Сложность: 4 Классы: 8,9,10
|
В прямоугольную таблицу из m строк и n столбцов записаны mn положительных чисел. Найдём в каждом столбце произведение чисел и сложим все n таких произведений. Докажите, что если переставить числа в каждой строке в порядке возрастания, то сумма аналогичных произведений будет не меньше, чем в первоначальной. Решите эту задачу для
а) m = n = 2;
б) m = 2 и произвольного n;
в) любых натуральных m и n.
|
|
Сложность: 4 Классы: 7,8,9
|
Для всякого ли натурального n можно расставить первые n натуральных чисел в таком порядке, чтобы ни для каких двух чисел их полусумма не равнялась ни одному из чисел, расположенных между ними?
|
|
Сложность: 4 Классы: 10,11
|
На сколько частей могут разделить пространство n плоскостей?
(Каждые три плоскости пересекаются в одной точке, никакие четыре плоскости не имеют общей точки.)
|
|
Сложность: 4 Классы: 8,9,10
|
Дано число H = 2·3·5·7·11·13·17·19·23·29·31·37 (произведение простых чисел). Пусть 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, ..., H – все его делители, выписанные в порядке возрастания. Под рядом делителей выпишем ряд из единиц и минус единиц по следующему правилу: под единицей 1, под числом, которое разлагается на чётное число простых сомножителей, 1, и под числом, которое разлагается на нечётное число простых сомножителей, –1. Доказать, что сумма чисел полученного ряда равна 0.
|
|
Сложность: 4 Классы: 8,9,10
|
Известно, что an – bn делится на n (a, b, n – натуральные числа, a ≠ b). Доказать, что
делится на n.
Страница:
<< 44 45 46 47
48 49 50 >> [Всего задач: 330]