ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На рисунке изображена схема трассы для картинга. Старт и финиш в точке A, причём картингист по дороге может сколько угодно раз заезжать в точку A и возвращаться на круг.

На путь от A до B или обратно юный гонщик Юра тратит минуту. На путь по кольцу Юра также тратит минуту. По кольцу можно ездить только против часовой стрелки (стрелки показывают возможные направление движения). Юра не поворачивает назад на полпути и не останавливается. Длительность заезда 10 минут. Найдите число возможных различных маршрутов (последовательностей прохождения участков).

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 79]      



Задача 98707

Тема:   [ Арифметические действия. Числовые тождества ]
Сложность: 2
Классы: 5,6

Используя пять двоек, арифметические действия и возведение в степень, составьте числа от 11 до 15.
Прислать комментарий     Решение


Задача 102824

Тема:   [ Арифметические действия. Числовые тождества ]
Сложность: 2
Классы: 6,7

30 тремя одинаковыми цифрами. Число 30 запишите в виде четырех различных выражений, из трех одинаковых цифр каждое. Цифры могут быть соединены знаками действий.
Прислать комментарий     Решение


Задача 102970

Тема:   [ Арифметические действия. Числовые тождества ]
Сложность: 2
Классы: 5,6

Используя пять двоек, арифметические действия и возведение в степень, составьте числа от 11 до 20.
Прислать комментарий     Решение


Задача 103010

Темы:   [ Арифметические действия. Числовые тождества ]
[ Математическая логика (прочее) ]
Сложность: 2
Классы: 5

На лужайке босоногих мальчиков столько же, сколько обутых девочек. Кого на лужайке больше — девочек или босоногих детей?
Прислать комментарий     Решение


Задача 103024

Тема:   [ Арифметические действия. Числовые тождества ]
Сложность: 2
Классы: 5,6

В соревновании участвовали 50 стрелков. Первый выбил 60 очков; второй — 80; третий — среднее арифметическое очков первых двух; четвертый — среднее арифметическое очков первых трех. Каждый следующий выбил среднее арифметическое очков всех предыдущих. Сколько очков выбил 42-й стрелок? А 50-й?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 79]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .