ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Верно ли, что для любых четырёх попарно скрещивающихся прямых можно так выбрать по одной точке на каждой из них, чтобы эти точки были вершинами а) трапеции, б) параллелограмма?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 10]      



Задача 61159

Тема:   [ Дробно-линейные преобразования ]
Сложность: 3
Классы: 10,11

Как действуют отображения    и    в случае, когда  δ = ad – bc = 0?

Прислать комментарий     Решение

Задача 61160

Тема:   [ Дробно-линейные преобразования ]
Сложность: 3+
Классы: 10,11

Докажите, что дробно-линейные отображения являются взаимно-однозначными отображениями расширенной комплексной плоскости.

Прислать комментарий     Решение

Задача 61181

 [Инвариантность двойного отношения]
Темы:   [ Дробно-линейные преобразования ]
[ Геометрия комплексной плоскости ]
Сложность: 3+
Классы: 10,11

Двойным отношением четырёх комплесных чисел называется число     (см. задачу 61180). Пусть w1, w2, w3, w4 – четыре точки плоскости, в которые дробно-линейное отображение    переводит данные четыре точки z1, z2, z3, z4. Докажите, что
W(w1, w2, w3, w4) = W(z1, z2, z3, z4).

Прислать комментарий     Решение

Задача 61182

Тема:   [ Дробно-линейные преобразования ]
Сложность: 3+
Классы: 10,11

Как изменяется двойное отношение  W(z1, z2, z3, z4)  при действии отображения  ?

Прислать комментарий     Решение

Задача 61187

Темы:   [ Дробно-линейные преобразования ]
[ Инверсия (прочее) ]
Сложность: 3+
Классы: 10,11

Представьте в виде композиции дробно-линейного отображения   w =   и комплексного сопряжения   w = z  инверсию относительно окружности
  а) с центром i и радиусом R = 1;
  б) с центром  Reiφ  и радиусом R;
  в) с центром z0 и радиусом R.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .