Страница:
<< 77 78 79 80
81 82 83 >> [Всего задач: 590]
|
|
Сложность: 4 Классы: 8,9,10,11
|
На улице дома стоят друг напротив друга, всего 50 пар. На правой стороне улицы расположены дома с чётными натуральными номерами, на левой – с нечётными натуральными номерами, номера возрастают от начала улицы к концу на каждой стороне, но идут не обязательно подряд (возможны пропуски). Для каждого дома на правой стороне улицы нашли разность между его номером и номером дома напротив, и оказалось, что все найденные числа различны. Наибольший номер дома на улице равен $n$. Найдите наименьшее возможное значение $n$.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Дана возрастающая последовательность положительных чисел $...< a_{-2} < a_{-1} < a_{0} < a_{1} < a_{2} < ...,$ бесконечная в обе стороны. Пусть $b_k$ – наименьшее целое число со свойством: отношение суммы любых $k$ подряд идущих членов данной последовательности к наибольшему из этих $k$ членов не превышает $b_k$. Докажите, что последовательность $b_{1}, b_{2}, b_{3}$, ...
либо совпадает с натуральным рядом 1, 2, 3, ..., либо с некоторого момента постоянна.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Докажите для любых натуральных чисел $a_1, a_2, ..., a_n$ неравенство $\bigg\lfloor\frac{a_1^2}{a_2}\bigg\rfloor + \bigg\lfloor\frac{a_2^2}{a_3}\bigg\rfloor + ... + \bigg\lfloor\frac{a_n^2}{a_1}\bigg\rfloor \geqslant a_1 + a_2 + ... +a_n$. ([$x$] – целая часть числа $x$.)
|
|
Сложность: 4 Классы: 9,10,11
|
Таня взяла список из ста чисел 1, 2, 3, . . . , 100 и вычеркнула несколько
из них. Оказалось, что какие бы два числа из оставшихся Таня ни взяла в качестве $a$ и $b$, уравнение $x^2 + ax + b=0$ имеет хотя бы один действительный корень. Какое наибольшее количество чисел могло остаться не вычеркнутым?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Докажите, что если
а) a, b и c – положительные числа, то
б) a, b, c и d – положительные числа,
в) a1, ..., an – положительные числа (n > 1), то
Страница:
<< 77 78 79 80
81 82 83 >> [Всего задач: 590]