ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 694]      



Задача 35077

Темы:   [ Периодичность и непериодичность ]
[ Рекуррентные соотношения (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10,11

Последовательность f(n) (n=1,2,...), состоящая из натуральных чисел, такова, что f(f(n))=f(n+1)+f(n) для всех натуральных n. Докажите, что все члены этой последовательности различны.
Прислать комментарий     Решение


Задача 110192

Темы:   [ Теория игр (прочее) ]
[ Геометрическая прогрессия ]
[ Геометрия на клетчатой бумаге ]
Сложность: 3+
Классы: 7,8,9

В средней клетке полоски 1×2005 стоит фишка. Два игрока по очереди сдвигают ее: сначала первый игрок передвигает фишку на одну клетку в любую сторону, затем второй передвигает ее на 2 клетки, 1-й – на 4 клетки, 2-й – на 8 и т.д. (k-й сдвиг происходит на 2k-1 клеток). Тот, кто не может сделать очередной ход, проигрывает. Кто может выиграть независимо от игры соперника?
Прислать комментарий     Решение


Задача 60582

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Линейные рекуррентные соотношения ]
Сложность: 3+
Классы: 9,10,11

Вычислите сумму:  

Прислать комментарий     Решение

Задача 60859

Темы:   [ Доказательство тождеств. Преобразования выражений ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 8,9,10

Найдите первые 17 знаков в десятичной записи у чисел:
а) $ {\dfrac{1}{\sqrt1+\sqrt2}}$ + $ {\dfrac{1}{\sqrt2+\sqrt3}}$ +...+ $ {\dfrac{1}{\sqrt{99}+\sqrt{100}}}$;
б) $ {\dfrac{\sqrt2+\sqrt{3/2}}{\sqrt2+\sqrt{2+\sqrt3}}}$ + $ {\dfrac{\sqrt2-\sqrt{3/2}}{\sqrt2-\sqrt{2-\sqrt3}}}$;
в) $ \sqrt{\vert 40\sqrt2-57\vert}$ - $ \sqrt{40\sqrt2+57}$.

Прислать комментарий     Решение

Задача 78714

Темы:   [ Индукция (прочее) ]
[ Последовательности (прочее) ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3+
Классы: 8,9,10

Из натуральных чисел составляются последовательности, в которых каждое последующее число больше квадрата предыдущего, а последнее число в последовательности равно 1969 (последовательности могут иметь разную длину). Доказать, что различных последовательностей такого вида меньше чем 1969.

Прислать комментарий     Решение

Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .