Страница:
<< 19 20 21 22
23 24 25 >> [Всего задач: 226]
|
|
Сложность: 3+ Классы: 10,11
|
Дан выпуклый четырёхугольник ABCD. Известно, что ∠ABD + ∠ACD > ∠BAC + ∠BDC. Докажите, что SABD + SACD > SBAC + SBDC.
В треугольник ABC со сторонами AB = 6, BC = 5, AC = 7 вписан квадрат, две вершины которого лежат на стороне AC, одна на стороне AB и одна на стороне BC. Через середину D стороны AC и центр квадрата проведена прямая, которая пересекается с высотой BH в точке M. Найдите площадь треугольника DMC.
Диагональ
AC выпуклого четырёхугольника
ABCD является диаметром
описанной около него окружности. Найдите отношение площадей треугольников
ABC и
ACD, если известно, что диагональ
BD делит
AC в отношении
2:1 (считая от точки
A), а
BAC = 30
o.
Диагональ
AC выпуклого четырёхугольника
ABCD является диаметром
описанной около него окружности. Найдите отношение площадей треугольников
ABC и
ACD, если известно, что диагональ
BD делит
AC в отношении
2:5 (считая от точки
A), а
BAC = 45
o.
|
|
Сложность: 3+ Классы: 8,9,10
|
На координатной плоскости заданы точки
A(0;2),
B(1;7),
C(10;7) и
D(7;1). Найдите площадь пятиугольника
ABCDE, где
E — точка
пересечения прямых
AC и
BD.
Страница:
<< 19 20 21 22
23 24 25 >> [Всего задач: 226]