ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Известно, что радиус окружности, описанной около треугольника ABC, равняется стороне AB этого треугольника. Найдите высоту треугольника ABC, проведенную из точки C, если она меньше $ {\frac{1}{2}}$, а две другие стороны треугольника равны $ \sqrt{3}$ и 2.

   Решение

Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 172]      



Задача 102507

Темы:   [ Теорема косинусов ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Известно, что расстояние от центра описанной окружности до стороны AB треугольника ABC равняется половине радиуса этой окружности. Найдите высоту треугольника ABC, опущенную на сторону AB, если она меньше $ \sqrt{\frac{3}{2}}$, а две другие стороны треугольника равны 2 и 3.

Прислать комментарий     Решение


Задача 102508

Темы:   [ Теорема косинусов ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Известно, что радиус окружности, описанной около треугольника ABC, равняется стороне AB этого треугольника. Найдите высоту треугольника ABC, проведенную из точки C, если она меньше $ {\frac{1}{2}}$, а две другие стороны треугольника равны $ \sqrt{3}$ и 2.

Прислать комментарий     Решение


Задача 52436

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4-
Классы: 8,9

Окружность касается сторон AB и BC треугольника ABC соответственно в точках D и E. Найдите высоту треугольника ABC, опущенную из точки A, если AB = 5, AC = 2, а точки A, D, E, C лежат на одной окружности.

Прислать комментарий     Решение


Задача 54451

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4-
Классы: 8,9

В прямоугольном треугольнике ABC проведена биссектриса прямого угла CL. Из вершины A ( $ \angle$A > 45o) на CL опущен перпендикуляр AD. Найдите площадь треугольника ABC, если AD = a, CL = b.

Прислать комментарий     Решение


Задача 53664

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4-
Классы: 8,9

На продолжении основания равнобедренного треугольника взята точка. Докажите, что разность расстояний от этой точки до прямых, содержащих боковые стороны треугольника, равна высоте, опущенной на боковую сторону.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 172]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .