ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Заданы N различных точек плоскости и натуральное число M. Требуется найти максимальный по площади невырожденный M-угольник без самопересечений и самокасаний, вершинами которого являются некоторые из этих N точек. Входные данные В первой строке входного файла через пробел записаны два целых числа M и N (3 ≤ M ≤ N ≤ 10). Во второй строке перечислены N точек, каждая из которых задана парой своих координат. Координаты являются вещественными числами и разделяются пробелом. Выходные данные В первую строку выходного файла нужно вывести площадь искомого M-угольника, а во вторую – номера точек, являющихся вершинами этого M-угольника (в порядке обхода по или против часовой стрелки). Номера точек разделяются пробелом. Если вариантов решений несколько, то достаточно выдать любой из них. Если же ни один M-угольник с указанными свойствами построить невозможно, то выходной файл должен содержать единственное число 0. Пример входного файла 3 4 0 0 0 1 1 0 1 1 Пример выходного файла 0.5 1 2 3 Решение |
Страница: 1 2 >> [Всего задач: 6]
1) бактерия, у которой есть не более одной соседки, погибает «от скуки»; 2) бактерия, у которой есть более трех соседок, погибает «от тесноты»; 3) на свободной клетке, у которой есть ровно три соседние бактерии, рождается новая бактерия. Все эти правила применяются одновременно ко всем клеткам игрового поля. Клетки считаются соседними, если у них есть хотя бы одна общая точка. Напишите программу, которая: по заданной колонии находит ее предка, то есть колонию, чьим следующим поколением она является, либо сообщает, что это невозможно; находит колонию, у которой нет предка, и которая погибает не ранее, чем через L шагов, либо сообщает, что такой колонии не существует. Входные данные Если во входном файле записана матрица M × N (2 ≤ M, N ≤ 15), то программа должна решать пункт 1 задачи для колонии бактерий, задаваемой этой матрицей. Бактерии обозначаются символом *, а пустые клетки – символом . (точка). Если во входном файле заданы три числа M, N и L (2 ≤ M, N ≤ 10, 0 ≤ L ≤ 10), то программа должна решать пункт 2 для этих параметров. Выходные данные Если искомая колония существует, то ее следует вывести в выходной файл в формате, приведенном в описании входных данных к пункту 1. В противном случае ваша программа должна записать в выходной файл сообщение «NOT POSSIBLE». Пример входного файла для пункта 1 ... *** ... Пример выходного файла для пункта 1 .*. .*. .*. Пример входного файла для пункта 2 2 2 10 Пример выходного файла для пункта 2 *. **
Входные данные Первая строка входного файла содержит целое число N – количество слов в наборе (1 ≤ N ≤ 9). В каждой из N последующих строк содержится по одному слову (некоторые из них могут повторяться). Слово представляет собой последовательность не более чем из 20 русских и/или английских букв. Выходные данные В выходной файл выведите один из возможных вариантов составления кроссворда, либо сообщение «NO SOLUTION», если кроссворд, удовлетворяющий условию задачи, составить невозможно. Пример входного файла СБОРЫ СОН ПОТОП АНТОН Пример выходного файла П СБОРЫ О Т АНТОН П
взять число из одного сектора; взять число, равное сумме двух или более чисел в смежных секторах. Из новых чисел составляется наибольшая последовательность подряд идущих чисел, начинающаяся с числа M: (M, M+1, M+2, ..., I). Пример на рисунке показывает, как получить все новые числа от 2 до 21 для приведенных на нем чисел в секторах. Серым цветом выделены суммируемые числа.
Любая булева функция однозначно задается своей таблицей истинности, в которой для каждого возможного набора значений аргументов указано значение функции. Например, x AND y – булева функция от двух аргументов. Ее таблица истинности выглядит так: Если договориться, что наборы значений аргументов в таблице располагаются в лексикографическом порядке, то функция AND однозначно задается третьим столбцом таблицы – строкой 0001. Аналогично, каждой булевой функции от k аргументов можно поставить в соответствие строку из нулей и единиц длины 2k. Задан набор из N+1 булевой функции (f, f1, f2, ..., fN). Напишите программу,
которая определяет, можно ли функцию f выразить через функции f1, f2, ..., fN, и
если такие представления возможны, то находит кратчайшее по числу символов
среди них.
Входные данные В первой строке входного файла через пробел записаны два целых числа M и N (3 ≤ M ≤ N ≤ 10). Во второй строке перечислены N точек, каждая из которых задана парой своих координат. Координаты являются вещественными числами и разделяются пробелом. Выходные данные В первую строку выходного файла нужно вывести площадь искомого M-угольника, а во вторую – номера точек, являющихся вершинами этого M-угольника (в порядке обхода по или против часовой стрелки). Номера точек разделяются пробелом. Если вариантов решений несколько, то достаточно выдать любой из них. Если же ни один M-угольник с указанными свойствами построить невозможно, то выходной файл должен содержать единственное число 0. Пример входного файла 3 4 0 0 0 1 1 0 1 1 Пример выходного файла 0.5 1 2 3
Страница: 1 2 >> [Всего задач: 6] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|