Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 367]
Художник-абстракционист взял деревянный куб 5×5×5, разбил каждую грань на единичные квадраты и окрасил каждый из них в один из трёх цветов – чёрный, белый или красный – так, что нет соседних по стороне квадратов одного цвета. Какое наименьшее число чёрных квадратов могло при этом получиться? (Квадраты, имеющие общую сторону, считаются соседними и в случае, когда они лежат на разных гранях куба.)
Если имеется 100 любых целых чисел, то среди них всегда можно взять несколько (или может быть одно) так, что в сумме они дадут число, делящееся на 100. Доказать.
|
|
Сложность: 4- Классы: 7,8,9
|
Сумма 100 натуральных чисел, каждое из которых не больше 100, равна 200.
Доказать, что из них можно выбрать несколько чисел, сумма которых равна 100.
|
|
Сложность: 4- Классы: 7,8,9
|
В Простоквашинской начальной школе учится всего 20 детей. У каждых двух из них есть общий дед.
Докажите, что у одного из дедов в этой школе учится не менее 14 внуков и внучек.
|
|
Сложность: 4- Классы: 7,8,9
|
Найдётся ли среди чисел вида 1...1 число, которое делится на 57?
Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 367]