ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На основании AB равнобедренного треугольника ABC выбрана точка D так, что окружность, вписанная в треугольник BCD, имеет тот же радиус, что и окружность, касающаяся продолжений отрезков CA и CD и отрезка AD (вневписанная окружность треугольника ACD). Докажите, что этот радиус равен одной четверти высоты треугольника ABC, опущенной на его боковую сторону.

   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 211]      



Задача 108570

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Вневписанные окружности ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9

На основании AB равнобедренного треугольника ABC выбрана точка D так, что окружность, вписанная в треугольник BCD, имеет тот же радиус, что и окружность, касающаяся продолжений отрезков CA и CD и отрезка AD (вневписанная окружность треугольника ACD). Докажите, что этот радиус равен одной четверти высоты треугольника ABC, опущенной на его боковую сторону.

Прислать комментарий     Решение

Задача 108605

Темы:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Свойства биссектрис, конкуррентность ]
[ Векторы (прочее) ]
Сложность: 4
Классы: 8,9

Около остроугольного треугольника ABC описана окружность с центром O. Перпендикуляры, опущенные из точки O на стороны треугольника, продолжены до пересечения с окружностью в точках K, M и P. Докажите, что     где Q – центр вписанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 111462

Темы:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9

В равнобедренном треугольнике ABC высота BD , опущенная на основание равна h , радиус вписанной окружности равен r . Найдите радиус окружности, описанной около этого треугольника.
Прислать комментарий     Решение


Задача 116101

 [Задача Люилье]
Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Формула Герона ]
Сложность: 4
Классы: 8,9

Пусть r — радиус вписанной окружности, а ra , rb и rc — радиусы вневписанных окружностей треугольника ABC , касающихся сторон BC=a , AC=b , AB=c соответственно; p — полупериметр треугольника ABC , S — его площадь. Докажите, что
                     а) = + + ; б) S = .
Прислать комментарий     Решение


Задача 52512

Темы:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4+
Классы: 8,9

В треугольнике ABC проведена биссектриса AK. Известно, что центры окружностей, вписанной в треугольник ABK и описанной около треугольника ABC, совпадают. Найдите углы треугольника ABC.

Прислать комментарий     Решение


Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 211]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .