ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Можно ли расположить в пространстве четыре попарно перпендикулярные прямые?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]      



Задача 87586

Темы:   [ Углы между прямыми и плоскостями ]
[ Перпендикулярность прямой и плоскости (прочее) ]
Сложность: 3
Классы: 10,11

Пусть ABC – прямоугольный треугольник с гипотенузой AB = a . На каком расстоянии от плоскости ABC находится точка M , если известно, что прямые MA , MB и MC образуют с плоскостью углы, равные α .
Прислать комментарий     Решение


Задача 87587

Темы:   [ Углы между прямыми и плоскостями ]
[ Перпендикулярность прямой и плоскости (прочее) ]
Сложность: 3
Классы: 10,11

В плоскости α проведены две перпендикулярные прямые. Прямая l образует с ними углы, равные 45o и 60o . Найдите угол прямой l с плоскостью α .
Прислать комментарий     Решение


Задача 109091

Темы:   [ Параллельность прямых и плоскостей ]
[ Перпендикулярность прямой и плоскости (прочее) ]
Сложность: 3
Классы: 8,9

Можно ли расположить в пространстве четыре попарно перпендикулярные прямые?
Прислать комментарий     Решение


Задача 109096

Темы:   [ Cерединный перпендикуляр и ГМТ ]
[ Перпендикулярность прямой и плоскости (прочее) ]
Сложность: 3
Классы: 10,11

Докажите, что геометрическое место точек, равноудаленных от двух заданных точек пространства, есть плоскость, перпендикулярная отрезку с концами в этих точках и проходящая через середину этого отрезка.
Прислать комментарий     Решение


Задача 109100

Темы:   [ Теорема о трех перпендикулярах ]
[ Перпендикулярность прямой и плоскости (прочее) ]
Сложность: 3
Классы: 10,11

Точка M находится на расстояниях 5 и 4 от двух параллельных прямых m и n и на расстоянии 3 от плоскости, проходящей через эти прямые. Найдите расстояние между прямыми m и n .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .