ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точки A и B лежат в плоскости α , M – такая точка в пространстве, для которой AM = 2 , BM = 5 и ортогональная проекция на плоскость α отрезка BM в три раза больше ортогональной проекции на эту плоскость отрезка AM . Найдите расстояние от точки M до плоскости α .

   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 27]      



Задача 109092

Темы:   [ Перпендикулярность прямой и плоскости (прочее) ]
[ Ортогональная проекция (прочее) ]
Сложность: 2
Классы: 8,9

Точка A лежит в плоскости α , ортогональная проекция отрезка AB на эту плоскость равна 1, AB = 2 . Найдите расстояние от точки B до плоскости α .
Прислать комментарий     Решение


Задача 87593

Темы:   [ Перпендикулярность прямой и плоскости (прочее) ]
[ Теорема о трех перпендикулярах ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 10,11

Найдите сумму углов, которые произвольная прямая образует с плоскостью и прямой, перпендикулярной этой плоскости.
Прислать комментарий     Решение


Задача 109093

Темы:   [ Перпендикулярность прямой и плоскости (прочее) ]
[ Ортогональная проекция (прочее) ]
Сложность: 3
Классы: 8,9

Точки A и B лежат в плоскости α , M – такая точка в пространстве, для которой AM = 2 , BM = 5 и ортогональная проекция на плоскость α отрезка BM в три раза больше ортогональной проекции на эту плоскость отрезка AM . Найдите расстояние от точки M до плоскости α .
Прислать комментарий     Решение


Задача 109097

Тема:   [ Перпендикулярность прямой и плоскости (прочее) ]
Сложность: 3
Классы: 10,11

В пирамиде ABCD рёбра AD , BD и CD равны 5, расстояние от точки D до плоскости ABC равно 4. Найдите радиус окружности, описанной около треугольника ABC .
Прислать комментарий     Решение


Задача 109098

Темы:   [ Перпендикулярность прямой и плоскости (прочее) ]
[ Ортогональная проекция (прочее) ]
Сложность: 3
Классы: 10,11

Известно, что некоторая точка M равноудалена от двух пересекающихся прямых m и n . Докажите, что ортогональная проекция точки M на плоскость прямых m и n лежит на биссектрисе одного из углов, образованных прямыми m и n .
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 >> [Всего задач: 27]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .