ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Вычислите

sin$\displaystyle \left(\vphantom{2\hbox{\rm arctg\ }\frac{1}{5}-\hbox{\rm arctg\ }\frac{5}{12}}\right.$2arctg $\displaystyle {\textstyle\frac{1}{5}}$ - arctg $\displaystyle {\textstyle\frac{5}{12}}$$\displaystyle \left.\vphantom{2\hbox{\rm arctg\ }\frac{1}{5}-\hbox{\rm arctg\ }\frac{5}{12}}\right)$.


Вниз   Решение


Найти все решения системы уравнений


удовлетворяющие условиям 0 xπ,;; 0 yπ .

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 210]      



Задача 61241

Тема:   [ Обратные тригонометрические функции ]
Сложность: 3-
Классы: 9,10

Найдите соотношение между arcsin cos arcsin x и arccos sin arccos x.

Прислать комментарий     Решение

Задача 61242

Тема:   [ Тригонометрические неравенства ]
Сложность: 3-
Классы: 9,10

Докажите, что при 0 $ \leqslant$ $ \varphi$ $ \leqslant$ $ {\frac{\pi}{2}}$ выполняется неравенство

cos sin$\displaystyle \varphi$ > sin cos$\displaystyle \varphi$.


Прислать комментарий     Решение

Задача 61243

Тема:   [ Тождественные преобразования (тригонометрия) ]
Сложность: 3-
Классы: 9,10

Вычислите

sin$\displaystyle \left(\vphantom{2\hbox{\rm arctg\ }\frac{1}{5}-\hbox{\rm arctg\ }\frac{5}{12}}\right.$2arctg $\displaystyle {\textstyle\frac{1}{5}}$ - arctg $\displaystyle {\textstyle\frac{5}{12}}$$\displaystyle \left.\vphantom{2\hbox{\rm arctg\ }\frac{1}{5}-\hbox{\rm arctg\ }\frac{5}{12}}\right)$.


Прислать комментарий     Решение

Задача 109161

Тема:   [ Системы тригонометрических уравнений и неравенств ]
Сложность: 3-
Классы: 9,10

Найти все решения системы уравнений


удовлетворяющие условиям 0 xπ,;; 0 yπ .
Прислать комментарий     Решение

Задача 61216

Темы:   [ Тригонометрия (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3-
Классы: 9,10

При каких целых значениях n функция

y = cos nx . sin$\displaystyle {\dfrac{5}{n}}$x

имеет период 3$ \pi$?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 210]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .