ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Пусть характеристическое уравнение (11.3 ) последовательности (11.2) имеет комплексные корни x1, 2 = a±ib = re±i$\scriptstyle \varphi$. Докажите, что для некоторой пары чисел c1, c2 будет выполняться равенство

an = rn(c1cos n$\displaystyle \varphi$ + c2sin n$\displaystyle \varphi$).


Вниз   Решение


Найдите объём правильной треугольной пирамиды со стороной основания a и углом α бокового ребра с плоскостью основания,

ВверхВниз   Решение


Найдите объём правильной шестиугольной пирамиды со стороной основания a и высотой h .

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 907]      



Задача 109390

Темы:   [ Правильная пирамида ]
[ Объем тетраэдра и пирамиды ]
Сложность: 2
Классы: 10,11

Найдите объём правильной четырёхугольной пирамиды со стороной основания a боковым ребром b .
Прислать комментарий     Решение


Задача 109399

Темы:   [ Правильная пирамида ]
[ Объем тетраэдра и пирамиды ]
Сложность: 2
Классы: 10,11

Найдите объём правильной шестиугольной пирамиды со стороной основания a и высотой h .
Прислать комментарий     Решение


Задача 109400

Темы:   [ Правильная пирамида ]
[ Объем тетраэдра и пирамиды ]
Сложность: 2
Классы: 10,11

Найдите объём правильной шестиугольной пирамиды со стороной основания a и боковым ребром b .
Прислать комментарий     Решение


Задача 109409

Темы:   [ Правильная пирамида ]
[ Углы между прямыми и плоскостями ]
Сложность: 2
Классы: 10,11

Найдите объём правильной треугольной пирамиды со стороной основания a и углом α бокового ребра с плоскостью основания,
Прислать комментарий     Решение


Задача 109410

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 2
Классы: 10,11

Найдите объём правильной треугольной пирамиды со стороной основания a и углом β боковой грани с плоскостью основания.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 907]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .