ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В треугольнике ABC проведена биссектриса AA', I – точка пересечения биссектрис. Докажите, что  AI > A'I.

Вниз   Решение


На плоскости даны две окружности радиусов 8 и 6 с центрами в точках S1 и S2, касающиеся некоторой прямой в точках A1 и A2 и лежащие по одну сторону от этой прямой. Отношение отрезка S1S2 к отрезку A1A2 равно $ \sqrt{3}$. Найдите S1S2.

ВверхВниз   Решение


Найдите объём правильной шестиугольной пирамиды со стороной основания a и углом β боковой грани с плоскостью основания.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 907]      



Задача 110349

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 2
Классы: 10,11

Найдите объём правильной четырёхугольной пирамиды с высотой h и углом β боковой грани с плоскостью основания.
Прислать комментарий     Решение


Задача 110364

Темы:   [ Правильная пирамида ]
[ Углы между прямыми и плоскостями ]
Сложность: 2
Классы: 10,11

Найдите объём правильной шестиугольной пирамиды со стороной основания a и углом α бокового ребра с плоскостью основания.
Прислать комментарий     Решение


Задача 110365

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 2
Классы: 10,11

Найдите объём правильной шестиугольной пирамиды со стороной основания a и углом β боковой грани с плоскостью основания.
Прислать комментарий     Решение


Задача 110369

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 2
Классы: 10,11

Найдите объём правильной шестиугольной пирамиды с боковым ребром b и углом β боковой грани с плоскостью основания.
Прислать комментарий     Решение


Задача 110373

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 2
Классы: 10,11

Найдите объём правильной шестиугольной пирамиды с высотой h и углом β боковой грани с плоскостью основания.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 907]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .