ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Правильная треугольная призма ABCA1B1C1 пересечена плоскостью, проходящей через середины ребер AB , A1C1 и BB1 . Постройте сечение призмы, найдите площадь сечения и вычислите угол между плоскостью основания ABC и плоскостью сечения, если сторона основания равна 2, а высота призмы равна .

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 145]      



Задача 110549

Темы:   [ Площадь сечения ]
[ Площадь и ортогональная проекция ]
[ Правильная призма ]
Сложность: 4
Классы: 10,11

Правильная треугольная призма ABCA1B1C1 пересечена плоскостью, проходящей через середины ребер AB , A1C1 и BB1 . Постройте сечение призмы, найдите площадь сечения и вычислите угол между плоскостью основания ABC и плоскостью сечения, если сторона основания равна 2, а высота призмы равна .
Прислать комментарий     Решение


Задача 110550

Темы:   [ Площадь сечения ]
[ Площадь и ортогональная проекция ]
[ Правильная призма ]
Сложность: 4
Классы: 10,11

Сторона основания ABC правильной треугольной призмы ABCA1B1C1 равна 12, а высота равна . На рёбрах AC , A1C1 и AB расположены соответственно точки P , F и E так, что AP=2 , A1F=6 и AE=6 . Постройте сечение призмы плоскостью, проходящей через точки P , F и E . Найдите площадь сечения и угол между плоскостью основания призмы и плоскостью сечения.
Прислать комментарий     Решение


Задача 110551

Темы:   [ Площадь сечения ]
[ Площадь и ортогональная проекция ]
[ Правильная призма ]
Сложность: 4
Классы: 10,11

Правильная треугольная призма ABCA1B1C1 пересечена плоскостью, проходящей через середины рёбер AB , A1C1 и BB1 . Постройте сечение призмы, найдите площадь сечения и вычислите угол между плоскостью основания ABC и плоскостью сечения, если сторона основания равна 4, а высота призмы равна .
Прислать комментарий     Решение


Задача 110939

Темы:   [ Теорема о трех перпендикулярах ]
[ Ортогональное проектирование ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9

В трапеции ABCD угол BAD прямой, угол ABC равен arctg 2 и AB=AD . Квадрат KLMN расположен в пространстве так, что его центр совпадает с серединой отрезка AB . Точка A лежит на стороне LK и AL < AK , точка M равноудалена от точек A и D . Расстояние от точки L до ближайшей к ней точки трапеции ABCD равно , а расстояние от точки N до ближайшей к ней точки трапеции ABCD равно . Найдите площадь трапеции ABCD и расстояние от точки M до плоскости ABCD .
Прислать комментарий     Решение


Задача 110940

Темы:   [ Теорема о трех перпендикулярах ]
[ Ортогональное проектирование ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9

Два квадрата ABCD и KLMN расположены в пространстве так, что центр квадрата KLMN совпадает с серединой стороны BC . Точка B лежит на стороне LM и BM<BL , точка N равноудалена от точек C и D . Расстояние от точки M до ближайшей к ней точки квадрата ABCD равно , а расстояние от точки K до ближайшей к ней точки квадрата ABCD равно 6. Найдите длины сторон квадратов ABCD и KLMN и расстояние от точки N до плоскости ABCD .
Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 145]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .