ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Плоскости диагональных сечений пирамиды, основанием которой является параллелограмм, взаимно перпендикулярны. Докажите, что суммы квадратов площадей противоположных боковых граней равны между собой.

   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 189]      



Задача 110742

Темы:   [ Перпендикулярные плоскости ]
[ Четырехугольная пирамида ]
Сложность: 4
Классы: 10,11

Плоскости диагональных сечений пирамиды, основанием которой является параллелограмм, взаимно перпендикулярны. Докажите, что суммы квадратов площадей противоположных боковых граней равны между собой.
Прислать комментарий     Решение


Задача 110743

Темы:   [ Перпендикулярные плоскости ]
[ Четырехугольная пирамида ]
Сложность: 4
Классы: 10,11

В основании четырёхугольной пирамиды SABCD лежит параллелограмм ABCD . Известно, что плоскости треугольников ASC и BSD перпендикулярны друг другу. Найдите площадь грани ASD , если площади граней ASB , BSC и CSD равны соответственно 5, 6 и 7.
Прислать комментарий     Решение


Задача 110744

Темы:   [ Перпендикулярные плоскости ]
[ Четырехугольная пирамида ]
Сложность: 4
Классы: 10,11

В основании четырёхугольной пирамиды SKLMN лежит параллелограмм KLMN . Известно, что плоскости треугольников SKM и SLN перпендикулярны друг другу. Найдите площадь грани NSK , если площади граней KSL , LSM и MSN равны соответственно 4, 6 и 7.
Прислать комментарий     Решение


Задача 110939

Темы:   [ Теорема о трех перпендикулярах ]
[ Ортогональное проектирование ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9

В трапеции ABCD угол BAD прямой, угол ABC равен arctg 2 и AB=AD . Квадрат KLMN расположен в пространстве так, что его центр совпадает с серединой отрезка AB . Точка A лежит на стороне LK и AL < AK , точка M равноудалена от точек A и D . Расстояние от точки L до ближайшей к ней точки трапеции ABCD равно , а расстояние от точки N до ближайшей к ней точки трапеции ABCD равно . Найдите площадь трапеции ABCD и расстояние от точки M до плоскости ABCD .
Прислать комментарий     Решение


Задача 110940

Темы:   [ Теорема о трех перпендикулярах ]
[ Ортогональное проектирование ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9

Два квадрата ABCD и KLMN расположены в пространстве так, что центр квадрата KLMN совпадает с серединой стороны BC . Точка B лежит на стороне LM и BM<BL , точка N равноудалена от точек C и D . Расстояние от точки M до ближайшей к ней точки квадрата ABCD равно , а расстояние от точки K до ближайшей к ней точки квадрата ABCD равно 6. Найдите длины сторон квадратов ABCD и KLMN и расстояние от точки N до плоскости ABCD .
Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 189]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .